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Instantaneous frequency and amplitude identification using wavelets: Application to glass structure
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This paper describes a method for extracting rapidly varying, superimposed amplitude-modulated and
frequency-modulated signal components. The method is based upon the continuous wavelet t(@\&frm
and uses a new wavelet that is a modification to the well-known Morlet wavelet to allow analysis at high
resolution. In order to interpret the CWT of a signal correctly, an approximate analytic expression for the CWT
of an oscillatory signal is examined via a stationary-phase approximation. This analysis is specialized for the
new wavelet and the results are used to construct expressions for the amplitude and frequency modulations of
the components in a signal from the transform of the signal. The method is tested on a representative,
variable-frequency signal as an example before being applied to a function of interest in our subject area—a
structural correlation function of a disordered material—which immediately reveals previously undetected
features.
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[. INTRODUCTION expression of the WT specialized to the new wavelet. We

demonstrate the properties of the WT using two example

Although the first example of a wavelet basis dates baclunctions, a mathematical function and the other a realistic
to 1910[1], it was not until the early 1980s, with the work of physical model function.

Goupillaud, Grossmann, and Morlg] in seismic geophys- We are interested in exploiting the complex WT in the

ics, that the wavelet transforWT) became a popular tool analysis of structural correlation functions that describe the
for the analysis of signals with nonperiodic characteristicsatomic structure of disordered materials. As these correlation

termednonstationarysignals[3]. functions have different spatial regimes, they may be classed
The WT allows a signal to be examined in both the time-as nonstationary signals. Despite the overwhelming success
and frequency-domains simultaneously. The WT as a timeof the WT in other fields, we are aware of only one other
frequency method has replaced the conventional Fourigp@per on this application of the WT. In that application, Ding
transform(FT) in many practical applications. The WT has €t al. [6] studied an experimentally observed correlation
been successfully applied in many areas of phyf&sin- function of vitreous silica using the so-called “Mexican hat”
cluding astrophysics, seismic geophysics, turbulence, an@ sombrero wavelet. We improve upon this single, prior
quantum mechanics, as well as many other fields including@Pplication in three significant ways, namely, the use of the
image processing, biological signal analysis, genomic DNA_(:ompIex WT, a tunable wavelet, and the method of interpret-
analysis, speech recognition, computer graphics, and multing the resulting transforms.
fractal analysis. We then analyze the reduced radial distribution function
The term WT is conventionally used to refer to a broad(RRDP of a structural model of a one-component glass with
selection of transformation methods and algorithms. In allPronounced icosahedral local ordgf]. The resulting WT
cases, the essence of a WT is to expand the input function i#f€arly shows the existence of different frequency compo-
terms of oscillations that are localized in both time and fre-nents in the RRDF and their exponential decay. These fea-
quency. tures were not clearly detectable by earlier meth@fisRef.
Different applications of the WT have different require- [6D)-
ments. Image compression, for example, often uses the dis- In Sec. Il we review the mathematical framework of the
crete WT to transform data to a new, orthogonal basis sapavelet transform and discuss some mother wavelet func-
where the data are hopefully presented in a more redundafiens before modifying an existing wavelet for our purposes.
form [4] Other app"cationS, particu|ar|y Signa| ana|yﬁ, In Sec. IlA we consider the WT of a general 03C|”at0ry
use the continuous wavelet transfot@WT), sacrificing or- ~ Signal using the new wavelet. The results are then used to
thogonality for extra precision in the identification of fea- interpret the wavelet transforms of a variable-frequency ex-
tures in a signal. ample function in Sec. IlIB and of the RRDF in Sec. IlI C.
The principal aim of this paper is to present the WT in aConcluding remarks can be found in Sec. IV.
form well suited to the analysis of one-dimensional signals
whose frequency components have rapidly varying fre-
guency and amplitude modulations. In order to achieve this
aim, we introduce a new “tunable,” complex wavelet. This  The underlying WT used in this paper can be completely
wavelet is based upon the well-known Morlet wavélBtbut  described as a one-dimensional complex, continuous WT us-
is better suited to high-resolution analysis. The features oing wavelets of constant shapg]. We begin by examining
the WT using the proposed wavelet are understood througthe formulation of this WT in terms of an integral transform,
an asymptotic stationary-phase approximation to the integrddefore examining the choice of mother wavelet function.

Il. FORMULATION
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For simplicity we use time-frequency terminology, con- still possible to trade temporal precision for frequency preci-
sidering the signal to be an input function of tinf€t). The  sion by altering the number of oscillations in the envelope of
CWT is an integral transformation that expands an inputhe mother wavelet.
function f(t) in terms of a complete set of basis functions The simplest such wavelet is the “Mexican hat” wavelet
&(t;a,b). These basis functions are all of the same shape akat mimics a single oscillation and is commonly used in
they are defined in terms of dilation yand translation by signal analysis. The functional form of this wavelet is the
b of a mother wavelet functiog(t): second derivative of a Gaussian. This wavelet offers good

localization in the time domain whilst retaining admissibility.

However, this wavelet has two major drawbacks for general
, (1)  signal analysis(i) useful information can only be extracted

from the WT at discrete intervals where the wavelets are in

phase with the signal, and@) the time-frequency resolution
with a,be R anda#0. is fixed.

The CWTF(a,b) is defined as the inner product: The former drawback has been overcome by the invention

of complex wavelets that mimic localized plane waves. The
o t—b WT can be computed separately for the real and imaginary
F(a,b):<§|f>z|a|*1f l/f*(T)f(t)dt- (2)  parts, yielding a complex scalar fiel&(a,b), where the
- modulus and argument df represent the amplitude and
o _ phase of the signal, respectively.

The original formulation of the CWT2] used a prefactor ~ The |atter drawback has been overcome by the invention
|a|~*to give a normalization to unity££)=1. We choose  of tunable wavelets that include an additional parameter to
an alternative prefactde| ~* (giving (¢|£)=|a| ") follow-  the mother wavelet function controlling the number of oscil-
ing Delpratet al.[9]. As we shall see, this formulation of the |ations in the envelope.

CWT allows for simple frequency identification by examin-  Goupillaud, Grossmann, and Morlet overcame these prob-
ing the maxima in the modulus of the CWT with respect tolems simultaneously with the invention of a modulated
the scalea. Gaussian wavelet, now known as the “Morlet” waveléef.

In order to understand the CWT, it is useful to relate it tOTh|S wavelet has a parameter” which controls the number
the FT. The FT has a nonlocalized, plane-wave basis set angf oscillations in the envelope, allowing time and frequency

therefore, has a single transform parameter—the frequengyncertainties to be traded. Thus the Morlet wavelet can be
. In contrast, the basis set of the CWT contains localizetkxpressed as

oscillations characterized by two transform parameters—the

t_
. — -1
f(tab)=lal 1y —

scale(or dilation) a and the translatioifor position b. It is Pu(tio) = 77—1/4CM(U)e—(l/Z)tz[eivt_ k(o)], 3
this critical difference that makes the CWT preferable for the
analysis of non-stationary signals. wherecy (o) =[1— 2e‘(1’4)"2;<(a) +k2(0)] Y2 and the pa-

We are free to choose a functional form fa(t), subject  rameterx (o) allows the admissibility condition to be satis-
to some constraints. Some of these constraints are forcehy.

upon us vyhereas others arise from the practical usefulness of The FT of this wavelet is
the resulting transform.

In order to recover a function from its wavelet transform SN —1a —(12)(w—0)2_ —1/20?
via the resolution of the identityf8], (t) must satisfy an u(wio)=m Tew(o)le «(o)e ]'(4)
admissibility conditionAlthough we do not make direct use
of the resolution of the identity in this paper, we require that  From Eq.(4) it is clear that the admissibility condition
our ch0|pe ofi(t) sat|sf|es thls copdmon to ensure that all ,}M(O;U):O implies thatK(U):ef(llz)(rZ.
information about the signal is retained by the transtorm. The Many previous applications of the Morlet wavelet have
admissibility condition is essentially that the FT(w) been concerned with signals containing slowly varying fre-
=(e'“!|y), satisfies the relatiogy(0)=0, equivalent to re- quency and amplitude components for which large values of
quiring that the mother wavelet and hence the basis wavelets (=5) are applicable and(o) (<10 °) is negligible[2].
have a mean of zero. However, we are interested in applying this type of analy-

Beyond simply satisfying the admissibility condition, it is sis to signals that contain rapidly varying frequencies and
practically useful to create mother wavelet functions thatamplitudes. In this case, the ability to use small values of
mimic features of interest in the signal. In the case of timebecomes important as we wish to maximize the temporal
frequency analysis, mother wavelet functions are choserresolution by minimizings whilst still being able to separate
which represent localized sinusoidal oscillations. The resultthe various frequency components in the signal and, conse-
ing wavelet transforms can then be used to extract instantajuently, (o) is no longer negligible.
neous measures of frequency and amplitude. The uncertainty Although the Morlet wavelet is admissible at smallthe
principle dictates that the produdtAw of the time and temporal localization is unsatisfactofgee Fig. 1 namely,
frequency uncertainties of such wavelets has a lower boundiy|? undergoes a transition from monomodality to bimodal-
It is no surprise, therefore, that this class of mother waveletty (a single ridge at large splits into two symmetric ridges
functions are typically based upon Gaussians. However, it ifor small o). The wavelet transform of a signal performed
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FIG. 1. Envelopé,|? of the Morlet waveleiyy(t; o) [Eq. (3)] FIG. 3. Envelopd ¢|? of the new wavelefEq. (5)].
showing the unwanted transition from monomodal to bimodal be-
havior at smallc (<1.797 85).

Q(U)=(1+3e—02_4e—(3/4)az)—1/2_ (6b)

using a wavelet that has a bimodal envelope results in the ) ] ]

signal being localized at about two different positicisee The Fourier transform of this wavelet is

Fig. 2. This produces unwanted artefacts in the resulting

instantaneous frequency and amplitude measurements - 1 2

(shown later in Figg. 10 gnd 11 P Plo;0)= Eei(m)(ﬁw) (e”*=1)[(e”*=1)p(o)
Therefore we remedy this drawback by modifying the

Morlet wavelet to produce a new wavelgtt; o), such that +(e’“+1)q(o)]. (7)

|4]? has a single, global maximum for ait. For the new

wavelet we choose to replace the single, normalization con- It is worthwhile noting that the real part of this new wave-

stantcy (o) in the Morlet wavelet with two new parameters let recovers the functional form of the Mexican hat wavelet

p(o) andqg(o) determined by two conditiongi) total nor-  in the limit c—0:

malization of the wavelet to unity, an@d) equal contribu-

tions to the normalization from the real and imaginary parts. 2 )

The new wavelet has the following functional form: Re 4(t;0)]= \@w‘l"‘e‘(l’z)‘ (t2—1).

t,o :7T71/4ei(1/2)t2 o)lcodot)— k(o
v(tio) {plo)fcogat) = «(o)] Thus the new wavelet allows a complete transition from very

+iq(o)sin(ot)}, (5) high temporal localizationg— 0 (the sombrero wavelgtto
maximum frequency localizatiom;— (plane wave Even
wherep(o) andq(o) are given by in the limit of minimal o, | #|? remains monomodaisee
Figs. 3 and 4 Thus we have improved upon the temporal
p(g):(l—e_az)_llz' (63 localization of the Morlet wavelet.

FIG. 2. Morlet waveletyy(t; o) [Eq. (3)] for o=1: real part, FIG. 4. New waveley(t;o) [Eq. (5)] for o=1: real part, solid
solid line; imaginary part, long-dashed line; and envelapg/|, line; imaginary part, long-dashed line; and envelappy|, short-
short-dashed lines. dashed lines.
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FIG. 5. Gaussian approximatiofsolid lines, Eq(10)] to the true enveloph/(t;o)|? of the mother wavelet functiofdashed lines, Eq.
(5)] for (@ lim o—0; (b) o=2.

We have also checked that, using the new wavelet, the 1 ) ) o, ) 2
original signal can be recovered by the resolution of the U¢,(U)=Z\/;{q [(20°—1)e" 7 +1]+pT(3—20%)e “
identity operator.

—2e~ 72— g2}, (1D)

I1l. ANALYSIS

The approximate envelop@fb, tends to the true enve-
lope, | | (see Fig. 5.

In this section we demonstrate how the new wavelet may We assuméwithout loss of generality9]) that there is a
be used to extract instantaneous frequencies and amplitude#gle point of stationary phase for the integrand in @y at
from a signal via the CWT. The following analysis is basedt=t¢(a,b). Under the conventional asymptotic approxima-
upon the stationary-phase approach of Delgtadl. [9] but  tion:
is specialized to the new wavelet.

A. Instantaneous frequency and amplitude

The wavelet transfornf(a,b) at a given scalea and dds| |1 IA;
translationb is given by the integralEqg. (2)] of a rapidly Gt ITIA Tt (12)
oscillating integrand. This integral may be rewritten in the
form we expand®d(t) around the stationary poirtt; assuming
1= . ®"(ts) #0 and substitute the approximate expressionAfpr
F(a,b)= Ef glPtab)rinAtablge, (8)  from Eq.(10) into the integral, which can then be taken. This
o gives an approximate expression for the squared modulus of
the CWT using the new wavelet:
where
2T 2 4 Axnie \279—1/2
At;a,b)=A(DA(t;ab), (9a IFab)l*~ \[z%Af(ts””“a 7@ (t)’]
3.20'2(1)” t 2 t—b 2
P(t;a,0)= (1)~ de(tiab), (o) xexp| - ST UTO) g
1+4ate),d"(tg)?
with f(t) =R A¢(t)e' 1] and &(t;a,b) )
=Aqt;a b)el¢«(tiab), Further, assuming the frequency of the mother wavelet to

In order to take the integral in the stationary-phase apPe constanf ¢(t)=0] and the frequency variation of the
proximation, we first approximaté, by a Gaussian. From Signal tg zbe slow in the region of interesfi.e.,
Eq. (1) we haveAZ(t;a,b)=a ?A%[(t—b)/a], whereAZ is  |P"(ts)[a’oy<1], then
taken to be a normalized Gaussian whose varianger) is
equal to the variance diy|?, giving

7T n
F@bl*~ \/;"wA?(ts)easz.z//q’ t9%tsD (1)

1 1 [t—b\?
Al(t;a,b)=|a| 2 exg ——|—| |, (10 For a monochromatic signdl.e., a signal that contains
V2o 20 a . . - .
4 4 only a single frequency at any given positipithere is a
scalea,(b) at any givenb, which corresponds to a basis
where the variance (o) can be found analytically wavelet centered ab whose frequencyp[b;a,(b),b] is
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FIG. 6. Fourier power spectrufg(w,o)|? of the mother wave- ° 2 0 2 °
let function[cf. Eq. (7)] in the limit c—0. FIG. 8. Variable-frequency functiof(t) [Eq. (19)].

equal to the local frequency 6{t). The scalea,(b) of this  lus of the WT [Eq. (14)] on the ridge, |F(a{’(b),b)|?
wavelet identifies the instantaneous frequency of the signat Va2 o,Al)(b)?, in terms ofA(t):
and may be found as the solution of the equation
®’'[b;a,(b),b]=0. From the definition of the points of sta-
tionary phase,®'[t{(a,b);a,b]=0, this corresponds to
tda,(b),b]=b, an alternative equation that can be used to
find a,(b). With the choice of normalization used in E4), There are two different well-known approximations to the
it is clear that these points maximize the expression for thénstantaneous frequenay; (t)/27. As each has relative mer-
squared modulus of the CWT with respecta@s obtained its, we consider both.
by the stationary-phase approximation, Etg). The simplest approximation to the instantaneous fre-
As the CWT is a linear operation, superimposed fre-quency is the rate of change of the phase of the CWT with
guency components are manifested as different scale®spect td, evaluated ag, (b),b:
al’(b), which locally maximize|F| (assuming sufficiently
large o to resolve the peaksThe curves formed by the
pointsa’’(b),b are known as the “ridges” of the transform
[9]. The trajectory of each ridge can be used to extract the
amplitude and frequency modulations of the corresponding e gerivation for this expression using the new wavelet is

signal components. . , Jidentical to that of the Morlet wavelet given by Delpkgital.
An approximate expression for the instantaneous ampli

tudeAq(t) of a signal component can be obtained by rewrit-""tpq giher approximation to the instantaneous frequency
ing the stationary-phase approximation to the squared mody;ses the equality of the frequency of the signal and of the

wavelet on a ridge to create an expression for the frequency

-1/4
A?’m:(%wi) Fa(t),0). (15

(16)

(i) 119 M
W) ()= || 2 FLa(b) b}

b=t

5

FIG. 7. Approximations to the frequency, of the mother
wavelet function[Eqg. (5)]: Analytic mean of| fp|2 [solid line, Eq.

(18)], numerical mode of|#|?> (long-dashed ling and the FIG. 9. Modulus of the CWT as a function of frequency
asymptotic approximatiomw ,= o valid in the limit c—o (short-  F(w,/27v,t) of the functionf(t) [Eqg. (19)] using the new mother
dashed ling wavelet functiony(t; o) [Eq. (5)] with o=2.
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FIG. 10. Instantaneous frequenciegt) using the new wavelgisolid lines, Morlet wavelet(short-dashed lingsand expected value
v(t)=|t|/ar for |t|>0 (long-dashed linesof the example functiom(t) [Eq. (19)] with o=1. Extraction usinda) maximal|F|, Eq.(17); (b)

dard F]/ob, Eq. (16).

of the signal as a function of the scagb) on the ridge and
the frequency of the mother wavelei,(o):

W (0=52ad )] 17

Conventionally,w , is taken to be the underlying modu-
lating frequencyr of the mother wavelet function. However,
this is a poor approximation at smatl Therefore, the obvi-
ous definition ofw, is the modal averagéosition of the

highest peakin the Fourier power spectrurhib|2. Unfortu-
nately, this expression fab, cannot be found analytically.
However, even at smaif, the spectrunhfﬁl2 is nearly sym-
metric about the main pedkee Fig. 6. Therefore, the mean

Delpratet al. [9] proposed that the phase-based instanta-
neous frequency, Eq(16), is more accurate than the
modulus-based measurement, EL7), and suggested an it-
erative algorithm for extracting signal components. Carmona
et al. have since shown that the modulus-based measurement
is extremely resiliant to noisgl0] and have suggested nu-
merous methods for extracting signal components using this
approacH11].

Thus the instantaneous frequencies and amplitudes of
components in a signal may be found from the CWT at the
points wherelF(a,b)| is locally maximized with respect to
a. These maxima can be identified numerically from a set of
samples offF(a,b) generated by discrete approximation to
the integral expression for the CWT, EE). Once found, the

average is always a good approximation to the modal avefmaxima may be interpreted using the approximate analytic
age(see Fig. Jand, unlike the mode, the mean can be found@sults given above.

analytically:

wy(0)=mop(o)q(o)(1—e @) (18

Using this expression fow,, in conjunction with the re-
lationship between scale and frequency in Ed), a CWT
may be plotted as a functidir (w /27 v,t)|of time and fre-
quency.

-7.5 -5 -2.5 0 2.5 5 7.5

FIG. 11. Instantaneous amplitude(t) [Eg. (15)] of f(t) [Eq.
(19)] with o=1. Instantaneous amplitud&(t), solid line; ex-
pected amplitude of 1.0 fdt|>0, short dashed line.

B. Example function

The method described in the preceding section is most
easily clarified by the following examples. First, we choose
to apply the method to the simple, variable-frequency func-
tion (see Fig. &

f(t)=sin(t?). (19

The FTf(w)=%[costw?) —sin(w?)] conveys little use-
ful information about the original function.

However, the modulus of the WT does convey useful in-
formation, particularly when plotted as a function of fre-
quency instead of scalesee Fig. 9 as this highlights the
linearly changing local frequency of(t) (given by v;
=|d¢¢/dt|/27) as a function ot.

The CWT off(t) contains a single, V” shaped ridge at
a,(b). This ridge reflects both the frequency modulation of
f(t) (see Fig. 1D and the amplitude modulatiofsee Fig.
11). In all cases, the results show fluctuations linked with the
phase¢; of the signal. However, compared to the Morlet
wavelet, the new wavelet produces much smaller fluctuations
in all results.
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FIG. 12. (a) RRDF of the IC glasginset showing a magnification of the damped density fluctuaktidbs its Fourier power spectrum
|d(k)[>.

C. Reduced radial distribution function wherepy is the average atomic dens[ty3]. This is shown in
Fig. 12a) for the IC glass. Reduced Lennard-Jones units
We now apply the method described in Sec. IlIA to a(r.u.) are used for length with the mean nearest-neighbor
function of practical interest. We choose to study the RRDFseparation being 1.150.05 r.u. The damped extended-

d(r) of a model glass structure. range density fluctuations are clearly visible, extending be-
The RRDF analyzed in this paper is taken from a strucyond 10 r.u[see the inset in Fig. 13)].
tural model of the icosahedrdlC) glass[7] created in a From the Fourier power spectrum dr) (shown in Fig.

classical molecular-dynamics simulatiph?]. We calculate 12(b), it is clear thatd(r) contains many components with
the transform as detailed in Sec. Il and perform the analysislifferent frequencies. The highest peak|@? occurs at the

as discussed in Sec. Il in order to study the components dfequencyry=1.08+0.01. This peak has nonzero width im-
d(r). The functiond(r) is considered to be zero outside the plying that the real-space fluctuation @d{r) corresponding
range 0<r <L/2, wherelL/2=25 is half the side of the cubic to this peak has a spatially varying amplitude but we cannot

simulation supercell which contains 108 000 atoms. deduce a functional form from this alone.
The RRDFA(r), is defined in terms of the atomic density ~ Plotting the modulusF 4(a,b)| of the CWT using differ-
p(r) as ent envelope widths, shown as a function iofand v
(=2wK) in Fig. 13, allowsd(r) to be examined in the time-
d(r)=4mr[p(r)—pol, (200 frequency plane. Using smait results in high spatial reso-
8

0 5 10 15 20 25 0 5 10 15 20 25
r r
FIG. 13. Modulus|Fd(w,/,/27rv,r)| of the CWT of the RRDF(r) plotted as a function of frequenay (see Fig. 12 using the new
wavelet[Eq. (5)] for (a) 0=2; (b) o=15.
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FIG. 15. Instantaneous amplitudg(r) of the largest compo-

FIG. 14. Instantaneous frequeney(r) of the largest compo- . .

nent of the RRDFA(r) [see Figq 1&)?]}‘(S)olid line iss extracted nent of the RRDFI(r) (see Fig. 12 plotted on a logarithmic scale.
) ; d Solid line isAq4(t) extracted using Eq15) with =2, dashed line

using Eq.(17) with 0=3, dashed line is the best-fit constant fre- . . A
quencyvy=1.08 over the range Sr <18. is the best-fit exponential decayy(r)=ae over the range 5

<r<18, wheree=31.8+0.5 andg=0.350+0.001.

lution but poor frequency resolution and the ridges are . , .
; _ dence for the exponential decay first observed by Ringl.
smeared togethgsee Fig. 18)]. Larger values obr sepa |. In addition, we can detect a significant deviation from

rate the ridges at the cost of decreasing the spatial resolutic%ﬁ tial d o tl ( Fig. 15 Thi

[see Fig. 18)]. Unlike the example function from the pre- € exponential decay ﬁ(r) atlarger (See rig. - IS

ceding sectiond(r) contains several components with dif- M8 either be due to statistical noise from the finite nature of
the simulation or due to the use of periodic boundary condi-

ferent frequencies which, particularly when using lamge . . . .
manifest ?hemselves as sgparate rigges in the ?NT Y?n thigons in the model producing e_ffectl\{e ang-range order. The
. precise reason needs further investigation.

paper we consider only the prominent ridgevat vy but the

me analysi n li he ridges seen at other fre-
Zier?c%sa ysis can be applied to the 9 IV. CONCLUSIONS

The ridge alongv=wvy shows that the prominent fre-  We have identified the complex, continuous wavelet
quency component identified from the Fourier power spectransform using wavelets of constant sh@4pkas a method
trum of d(r) is particularly strong around=0 but decays well suited to the time-frequency analysis of one-
away with greater. This trajectory of the ridge can then be dimensional functions. For our target application, namely,
used to extract the instantaneous frequencies and amplitudgge analysis of functions with components that have rapidly
of this component ird(r). varying frequency and amplitude modulations, we have illus-

The instantaneous frequency found using 3 (see Fig.  trated an important shortcoming of the existing Morlet wave-
14) remains constant over a large range.dks expected, the et [2], explained the origin of this shortcoming and proposed
scale at which this ridge occurs in the CWT dfr) corre-  a new wavelet that overcomes the problem. In addition, we
sponds to the position of the prominent peak in the Fouriehave specialized an existing meth@] for extracting instan-
power spectrum ofl(r). taneous frequency and amplitude measurements from signals

The amplitudes of components in an RRDF are expecte¢b the new wavelet.
to tend to zero in the limit —<c for a disordered material Two example functions have been analyzed using the new
due to the absence of long-range order. The instantaneowgvelet and new method of analysis. The first, a simple
amplitude Ay4(r) of the dominant ridge extracted from the variable-frequency function, illustrates the significant im-
CWT using the new wavelet, E¢5), is shown plotted on a provement of the new wavelet over the Morlet wavelet and
logarithmic scale in Fig. 15. The amplitude is clearly seen togives numerical evidence that our method of analysis is ac-
decay exponentially in the region<a <18. The reason for curate. The second is a real-world example of a direct-space
the exponential form of this decalso observed by Ding atomic correlation function of a glass which highlights the
et al. [6] for silica glas$ is not yet known. advantages of the method over the conventional Fourier

The method used by Dingt al. [6] could not reproduce transform and greatly improves upon the single, previous
the frequency modulation of the damped density fluctuationsvavelet analysis of such a function by Dieg al. [6].
in d(r) and their observed amplitude modulation contained We have successfully used the WT to analyze the reduced
only six points that were noted to decay approximately exradial distribution functiofRRDP of a model glass and can
ponentially. In comparison, our method reproduces true, inimmediately identify previously undetected features. The
stantaneous frequenciéanalogous to frequencies obtained dominant component in the RRDfhe damped extended-
by Fourier analysis showing the frequency modulation of range density fluctuatiopdias a period that rapidly settles to
individual density fluctuations imd(r), and the amplitude a constant value. Other components with different frequen-
modulations of these variable-frequency components, as @es are present in the RRDF. These oscillations all have
continuum of points. This gives much more compelling evi-approximately exponentially decaying real-space amplitudes.
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