
PHYSICAL REVIEW E 66, 026703 ~2002!
Instantaneous frequency and amplitude identification using wavelets: Application to glass structure
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This paper describes a method for extracting rapidly varying, superimposed amplitude-modulated and
frequency-modulated signal components. The method is based upon the continuous wavelet transform~CWT!
and uses a new wavelet that is a modification to the well-known Morlet wavelet to allow analysis at high
resolution. In order to interpret the CWT of a signal correctly, an approximate analytic expression for the CWT
of an oscillatory signal is examined via a stationary-phase approximation. This analysis is specialized for the
new wavelet and the results are used to construct expressions for the amplitude and frequency modulations of
the components in a signal from the transform of the signal. The method is tested on a representative,
variable-frequency signal as an example before being applied to a function of interest in our subject area—a
structural correlation function of a disordered material—which immediately reveals previously undetected
features.
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I. INTRODUCTION

Although the first example of a wavelet basis dates b
to 1910@1#, it was not until the early 1980s, with the work o
Goupillaud, Grossmann, and Morlet@2# in seismic geophys-
ics, that the wavelet transform~WT! became a popular too
for the analysis of signals with nonperiodic characteristi
termednonstationarysignals@3#.

The WT allows a signal to be examined in both the tim
and frequency-domains simultaneously. The WT as a tim
frequency method has replaced the conventional Fou
transform~FT! in many practical applications. The WT ha
been successfully applied in many areas of physics@3# in-
cluding astrophysics, seismic geophysics, turbulence,
quantum mechanics, as well as many other fields includ
image processing, biological signal analysis, genomic D
analysis, speech recognition, computer graphics, and m
fractal analysis.

The term WT is conventionally used to refer to a bro
selection of transformation methods and algorithms. In
cases, the essence of a WT is to expand the input functio
terms of oscillations that are localized in both time and f
quency.

Different applications of the WT have different requir
ments. Image compression, for example, often uses the
crete WT to transform data to a new, orthogonal basis
where the data are hopefully presented in a more redun
form @4#. Other applications, particularly signal analysis@5#,
use the continuous wavelet transform~CWT!, sacrificing or-
thogonality for extra precision in the identification of fe
tures in a signal.

The principal aim of this paper is to present the WT in
form well suited to the analysis of one-dimensional sign
whose frequency components have rapidly varying f
quency and amplitude modulations. In order to achieve
aim, we introduce a new ‘‘tunable,’’ complex wavelet. Th
wavelet is based upon the well-known Morlet wavelet@2# but
is better suited to high-resolution analysis. The features
the WT using the proposed wavelet are understood thro
an asymptotic stationary-phase approximation to the inte
1063-651X/2002/66~2!/026703~9!/$20.00 66 0267
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expression of the WT specialized to the new wavelet.
demonstrate the properties of the WT using two exam
functions, a mathematical function and the other a reali
physical model function.

We are interested in exploiting the complex WT in th
analysis of structural correlation functions that describe
atomic structure of disordered materials. As these correla
functions have different spatial regimes, they may be clas
as nonstationary signals. Despite the overwhelming suc
of the WT in other fields, we are aware of only one oth
paper on this application of the WT. In that application, Di
et al. @6# studied an experimentally observed correlati
function of vitreous silica using the so-called ‘‘Mexican ha
or sombrero wavelet. We improve upon this single, pr
application in three significant ways, namely, the use of
complex WT, a tunable wavelet, and the method of interp
ing the resulting transforms.

We then analyze the reduced radial distribution funct
~RRDF! of a structural model of a one-component glass w
pronounced icosahedral local order@7#. The resulting WT
clearly shows the existence of different frequency com
nents in the RRDF and their exponential decay. These
tures were not clearly detectable by earlier methods~cf. Ref.
@6#!.

In Sec. II we review the mathematical framework of th
wavelet transform and discuss some mother wavelet fu
tions before modifying an existing wavelet for our purpos
In Sec. II A we consider the WT of a general oscillato
signal using the new wavelet. The results are then use
interpret the wavelet transforms of a variable-frequency
ample function in Sec. III B and of the RRDF in Sec. III C
Concluding remarks can be found in Sec. IV.

II. FORMULATION

The underlying WT used in this paper can be complet
described as a one-dimensional complex, continuous WT
ing wavelets of constant shape@8#. We begin by examining
the formulation of this WT in terms of an integral transform
before examining the choice of mother wavelet function.
©2002 The American Physical Society03-1
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For simplicity we use time-frequency terminology, co
sidering the signal to be an input function of time,f (t). The
CWT is an integral transformation that expands an in
function f (t) in terms of a complete set of basis functio
j(t;a,b). These basis functions are all of the same shap
they are defined in terms of dilation bya and translation by
b of a mother wavelet functionc(t):

j~ t;a,b!5uau21cS t2b

a D , ~1!

with a,bPR anda5” 0.
The CWTF(a,b) is defined as the inner product:

F~a,b!5^ju f &[uau21E
2`

`

c* S t2b

a D f ~ t !dt. ~2!

The original formulation of the CWT@2# used a prefactor
uau21/2 to give a normalization to unity,̂juj&51. We choose
an alternative prefactoruau21 ~giving ^juj&5uau21) follow-
ing Delpratet al. @9#. As we shall see, this formulation of th
CWT allows for simple frequency identification by exami
ing the maxima in the modulus of the CWT with respect
the scalea.

In order to understand the CWT, it is useful to relate it
the FT. The FT has a nonlocalized, plane-wave basis set
therefore, has a single transform parameter—the freque
v. In contrast, the basis set of the CWT contains localiz
oscillations characterized by two transform parameters—
scale~or dilation! a and the translation~or position! b. It is
this critical difference that makes the CWT preferable for
analysis of non-stationary signals.

We are free to choose a functional form forc(t), subject
to some constraints. Some of these constraints are fo
upon us whereas others arise from the practical usefulne
the resulting transform.

In order to recover a function from its wavelet transfor
via the resolution of the identity@8#, c(t) must satisfy an
admissibility condition. Although we do not make direct us
of the resolution of the identity in this paper, we require th
our choice ofc(t) satisfies this condition to ensure that a
information about the signal is retained by the transform. T
admissibility condition is essentially that the FT,ĉ(v)
5^eivtuc&, satisfies the relationĉ(0)50, equivalent to re-
quiring that the mother wavelet and hence the basis wave
have a mean of zero.

Beyond simply satisfying the admissibility condition, it
practically useful to create mother wavelet functions t
mimic features of interest in the signal. In the case of tim
frequency analysis, mother wavelet functions are chos
which represent localized sinusoidal oscillations. The res
ing wavelet transforms can then be used to extract insta
neous measures of frequency and amplitude. The uncerta
principle dictates that the productDtDv of the time and
frequency uncertainties of such wavelets has a lower bou
It is no surprise, therefore, that this class of mother wav
functions are typically based upon Gaussians. However,
02670
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still possible to trade temporal precision for frequency pre
sion by altering the number of oscillations in the envelope
the mother wavelet.

The simplest such wavelet is the ‘‘Mexican hat’’ wavel
that mimics a single oscillation and is commonly used
signal analysis. The functional form of this wavelet is t
second derivative of a Gaussian. This wavelet offers go
localization in the time domain whilst retaining admissibilit
However, this wavelet has two major drawbacks for gene
signal analysis:~i! useful information can only be extracte
from the WT at discrete intervals where the wavelets are
phase with the signal, and~ii ! the time-frequency resolution
is fixed.

The former drawback has been overcome by the inven
of complex wavelets that mimic localized plane waves. T
WT can be computed separately for the real and imagin
parts, yielding a complex scalar field,F(a,b), where the
modulus and argument ofF represent the amplitude an
phase of the signal, respectively.

The latter drawback has been overcome by the inven
of tunable wavelets that include an additional paramete
the mother wavelet function controlling the number of osc
lations in the envelope.

Goupillaud, Grossmann, and Morlet overcame these pr
lems simultaneously with the invention of a modulat
Gaussian wavelet, now known as the ‘‘Morlet’’ wavelet@2#.
This wavelet has a parameter,s, which controls the numbe
of oscillations in the envelope, allowing time and frequen
uncertainties to be traded. Thus the Morlet wavelet can
expressed as

cM~ t;s!5p21/4cM~s!e2(1/2)t2@eist2k~s!#, ~3!

wherecM(s)5@122e2(1/4)s2
k(s)1k2(s)#21/2 and the pa-

rameterk(s) allows the admissibility condition to be satis
fied.

The FT of this wavelet is

ĉM~v;s!5p21/4cM~s!@e2(1/2)(v2s)2
2k~s!e21/2v2

#.
~4!

From Eq. ~4! it is clear that the admissibility condition
ĉM(0;s)50 implies thatk(s)5e2(1/2)s2

.
Many previous applications of the Morlet wavelet ha

been concerned with signals containing slowly varying f
quency and amplitude components for which large values
s (>5) are applicable andk(s) (<1026) is negligible@2#.

However, we are interested in applying this type of ana
sis to signals that contain rapidly varying frequencies a
amplitudes. In this case, the ability to use small values os
becomes important as we wish to maximize the tempo
resolution by minimizings whilst still being able to separat
the various frequency components in the signal and, con
quently,k(s) is no longer negligible.

Although the Morlet wavelet is admissible at smalls, the
temporal localization is unsatisfactory~see Fig. 1!; namely,
ucMu2 undergoes a transition from monomodality to bimod
ity ~a single ridge at larges splits into two symmetric ridges
for small s). The wavelet transform of a signal performe
3-2
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INSTANTANEOUS FREQUENCY AND AMPLITUDE . . . PHYSICAL REVIEW E 66, 026703 ~2002!
using a wavelet that has a bimodal envelope results in
signal being localized at about two different positions~see
Fig. 2!. This produces unwanted artefacts in the result
instantaneous frequency and amplitude measurem
~shown later in Figs. 10 and 11!.

Therefore we remedy this drawback by modifying t
Morlet wavelet to produce a new waveletc(t;s), such that
ucu2 has a single, global maximum for alls. For the new
wavelet we choose to replace the single, normalization c
stantcM(s) in the Morlet wavelet with two new paramete
p(s) andq(s) determined by two conditions:~i! total nor-
malization of the wavelet to unity, and~ii ! equal contribu-
tions to the normalization from the real and imaginary pa
The new wavelet has the following functional form:

c~ t;s!5p21/4e2(1/2)t2$p~s!@cos~st !2k~s!#

1 iq~s!sin~st !%, ~5!

wherep(s) andq(s) are given by

p~s!5~12e2s2
!21/2, ~6a!

FIG. 1. EnvelopeucMu2 of the Morlet waveletcM(t;s) @Eq. ~3!#
showing the unwanted transition from monomodal to bimodal
havior at smalls (,1.797 85).

FIG. 2. Morlet waveletcM(t;s) @Eq. ~3!# for s51: real part,
solid line; imaginary part, long-dashed line; and envelope6ucu,
short-dashed lines.
02670
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q~s!5~113e2s2
24e2(3/4)s2

!21/2. ~6b!

The Fourier transform of this wavelet is

ĉ~v;s!5
1

2
e2(1/2)(s1v)2

~esv21!@~esv21!p~s!

1~esv11!q~s!#. ~7!

It is worthwhile noting that the real part of this new wav
let recovers the functional form of the Mexican hat wave
in the limit s→0:

Re@c~ t;0!#5A2

3
p21/4e2(1/2)t2~ t221!.

Thus the new wavelet allows a complete transition from v
high temporal localization,s→0 ~the sombrero wavelet!, to
maximum frequency localization,s→` ~plane wave!. Even
in the limit of minimal s, ucu2 remains monomodal~see
Figs. 3 and 4!. Thus we have improved upon the tempor
localization of the Morlet wavelet.

-
FIG. 3. Envelopeucu2 of the new wavelet@Eq. ~5!#.

FIG. 4. New waveletc(t;s) @Eq. ~5!# for s51: real part, solid
line; imaginary part, long-dashed line; and envelope6ucu, short-
dashed lines.
3-3
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FIG. 5. Gaussian approximations@solid lines, Eq.~10!# to the true envelopeuc(t;s)u2 of the mother wavelet function@dashed lines, Eq.
~5!# for ~a! lim s→0; ~b! s52.
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We have also checked that, using the new wavelet,
original signal can be recovered by the resolution of
identity operator.

III. ANALYSIS

A. Instantaneous frequency and amplitude

In this section we demonstrate how the new wavelet m
be used to extract instantaneous frequencies and amplit
from a signal via the CWT. The following analysis is bas
upon the stationary-phase approach of Delpratet al. @9# but
is specialized to the new wavelet.

The wavelet transformF(a,b) at a given scalea and
translationb is given by the integral@Eq. ~2!# of a rapidly
oscillating integrand. This integral may be rewritten in t
form

F~a,b![
1

2E2`

`

eiF(t;a,b)1 ln A(t;a,b)dt, ~8!

where

A~ t;a,b!5Af~ t !Aj~ t;a,b!, ~9a!

F~ t;a,b!5f f~ t !2fj~ t;a,b!, ~9b!

with f (t)5Re@Af(t)e
if f (t)# and j(t;a,b)

5Aj(t;a,b)eifj(t;a,b).
In order to take the integral in the stationary-phase

proximation, we first approximateAj by a Gaussian. From
Eq. ~1! we haveAj

2(t;a,b)5a22Ac
2@(t2b)/a#, whereAc

2 is
taken to be a normalized Gaussian whose variancesc(s) is
equal to the variance ofucu2, giving

Aj
2~ t;a,b!.uau22

1

A2psc

expF2
1

2sc
2 S t2b

a D 2G , ~10!

where the variancesc(s) can be found analytically
02670
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4
Ap$q2@~2s221!e2s2

11#1p2@~322s2!e2s2

22e2(3/4)s2
~22s2!#% . ~11!

The approximate envelope,Ac
2 , tends to the true enve

lope, ucu2 ~see Fig. 5!.
We assume~without loss of generality@9#! that there is a

single point of stationary phase for the integrand in Eq.~8! at
t5ts(a,b). Under the conventional asymptotic approxim
tion:

U]f f

]t U@U1A ]Af

]t U, ~12!

we expandF(t) around the stationary pointts assuming
F9(ts)5” 0 and substitute the approximate expression forAj

from Eq.~10! into the integral, which can then be taken. Th
gives an approximate expression for the squared modulu
the CWT using the new wavelet:

uF~a,b!u2.Ap

2
scAf

2~ ts!@114a4sc
4F9~ ts!

2#21/2

3expF2
a2sc

2F9~ ts!
2~ ts2b!2

114a4sc
4F9~ ts!

2 G . ~13!

Further, assuming the frequency of the mother wavele
be constant@fc9 (t)50# and the frequency variation of th
signal to be slow in the region of interest@i.e.,
uF9(ts)ua2sc

2!1#, then

uF~a,b!u2.Ap

2
scAf

2~ ts!e
2a2sc

2F9(ts)
2(ts2b)2

. ~14!

For a monochromatic signal~i.e., a signal that contains
only a single frequency at any given position!, there is a
scalear(b) at any givenb, which corresponds to a bas
wavelet centered atb whose frequencyfj8@b;ar(b),b# is
3-4
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INSTANTANEOUS FREQUENCY AND AMPLITUDE . . . PHYSICAL REVIEW E 66, 026703 ~2002!
equal to the local frequency off (t). The scalear(b) of this
wavelet identifies the instantaneous frequency of the sig
and may be found as the solution of the equat
F8@b;ar(b),b#50. From the definition of the points of sta
tionary phase,F8@ ts(a,b);a,b#50, this corresponds to
ts@ar(b),b#5b, an alternative equation that can be used
find ar(b). With the choice of normalization used in Eq.~1!,
it is clear that these points maximize the expression for
squared modulus of the CWT with respect toa as obtained
by the stationary-phase approximation, Eq.~14!.

As the CWT is a linear operation, superimposed f
quency components are manifested as different sc
ar

( i )(b), which locally maximizeuFu ~assuming sufficiently
large s to resolve the peaks!. The curves formed by the
pointsar

( i )(b),b are known as the ‘‘ridges’’ of the transform
@9#. The trajectory of each ridge can be used to extract
amplitude and frequency modulations of the correspond
signal components.

An approximate expression for the instantaneous am
tudeAf(t) of a signal component can be obtained by rew
ing the stationary-phase approximation to the squared mo

FIG. 6. Fourier power spectrumuĉ(v,s)u2 of the mother wave-
let function @cf. Eq. ~7!# in the limit s→0.

FIG. 7. Approximations to the frequencyvc of the mother

wavelet function@Eq. ~5!#: Analytic mean ofuĉu2 @solid line, Eq.

~18!#, numerical mode of uĉu2 ~long-dashed line!, and the
asymptotic approximationvc5s valid in the limit s→` ~short-
dashed line!.
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lus of the WT @Eq. ~14!# on the ridge, uF(ar
( i )(b),b)u2

.Ap/2scAf
( i )(b)2, in terms ofAf(t):

Af
( i )~ t !.S 1

2
psc

2 D 21/4

uF~ar
( i )~ t !,t !u. ~15!

There are two different well-known approximations to t
instantaneous frequencyf f8(t)/2p. As each has relative mer
its, we consider both.

The simplest approximation to the instantaneous f
quency is the rate of change of the phase of the CWT w
respect tob, evaluated atar(b),b:

n f
( i )~ t !.

1

2p UF ]

]b
arg$F@ar

( i )~b!,b#%G
b5t

U. ~16!

The derivation for this expression using the new wavele
identical to that of the Morlet wavelet given by Delpratet al.
@9#.

The other approximation to the instantaneous freque
uses the equality of the frequency of the signal and of
wavelet on a ridge to create an expression for the freque

FIG. 8. Variable-frequency functionf (t) @Eq. ~19!#.

FIG. 9. Modulus of the CWT as a function of frequenc
F(vc/2pn,t) of the functionf (t) @Eq. ~19!# using the new mother
wavelet functionc(t;s) @Eq. ~5!# with s52.
3-5
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FIG. 10. Instantaneous frequenciesn f(t) using the new wavelet~solid lines!, Morlet wavelet~short-dashed lines!, and expected value
n(t)5utu/p for utu@0 ~long-dashed lines! of the example functionf (t) @Eq. ~19!# with s51. Extraction using~a! maximaluFu, Eq.~17!; ~b!
] arg@F#/]b, Eq. ~16!.
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of the signal as a function of the scalear(b) on the ridge and
the frequency of the mother wavelet,vc(s):

n f
( i )~ t !.

vc

2p
uar

( i )~ t !u21. ~17!

Conventionally,vc is taken to be the underlying modu
lating frequencys of the mother wavelet function. Howeve
this is a poor approximation at smalls. Therefore, the obvi-
ous definition ofvc is the modal average~position of the
highest peak! in the Fourier power spectrumuĉu2. Unfortu-
nately, this expression forvc cannot be found analytically
However, even at smalls, the spectrumuĉu2 is nearly sym-
metric about the main peak~see Fig. 6!. Therefore, the mean
average is always a good approximation to the modal a
age~see Fig. 7! and, unlike the mode, the mean can be fou
analytically:

vc~s!5Apsp~s!q~s!~12e2(3/4)s2
!. ~18!

Using this expression forvc in conjunction with the re-
lationship between scale and frequency in Eq.~17!, a CWT
may be plotted as a functionuF(vc/2pn,t)uof time and fre-
quency.

FIG. 11. Instantaneous amplitudeAf(t) @Eq. ~15!# of f (t) @Eq.
~19!# with s51. Instantaneous amplitudeAf(t), solid line; ex-
pected amplitude of 1.0 forutu@0, short dashed line.
02670
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Delpratet al. @9# proposed that the phase-based instan
neous frequency, Eq.~16!, is more accurate than th
modulus-based measurement, Eq.~17!, and suggested an it
erative algorithm for extracting signal components. Carmo
et al.have since shown that the modulus-based measurem
is extremely resiliant to noise@10# and have suggested nu
merous methods for extracting signal components using
approach@11#.

Thus the instantaneous frequencies and amplitudes
components in a signal may be found from the CWT at
points whereuF(a,b)u is locally maximized with respect to
a. These maxima can be identified numerically from a se
samples ofF(a,b) generated by discrete approximation
the integral expression for the CWT, Eq.~2!. Once found, the
maxima may be interpreted using the approximate anal
results given above.

B. Example function

The method described in the preceding section is m
easily clarified by the following examples. First, we choo
to apply the method to the simple, variable-frequency fu
tion ~see Fig. 8!:

f ~ t !5sin~ t2!. ~19!

The FT f̂ (v)5 1
2 @cos(14v

2)2sin(1
4v

2)# conveys little use-
ful information about the original function.

However, the modulus of the WT does convey useful
formation, particularly when plotted as a function of fr
quency instead of scale~see Fig. 9! as this highlights the
linearly changing local frequency off (t) ~given by n f
5u]f f /dtu/2p) as a function oft.

The CWT of f (t) contains a single, ‘‘V’’ shaped ridge at
ar(b). This ridge reflects both the frequency modulation
f (t) ~see Fig. 10! and the amplitude modulation~see Fig.
11!. In all cases, the results show fluctuations linked with
phasef f of the signal. However, compared to the Morl
wavelet, the new wavelet produces much smaller fluctuati
in all results.
3-6
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FIG. 12. ~a! RRDF of the IC glass~inset showing a magnification of the damped density fluctuations!; ~b! its Fourier power spectrum

ud̂(k)u2.
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C. Reduced radial distribution function

We now apply the method described in Sec. III A to
function of practical interest. We choose to study the RR
d(r ) of a model glass structure.

The RRDF analyzed in this paper is taken from a str
tural model of the icosahedral~IC! glass @7# created in a
classical molecular-dynamics simulation@12#. We calculate
the transform as detailed in Sec. II and perform the anal
as discussed in Sec. III in order to study the component
d(r ). The functiond(r ) is considered to be zero outside th
range 0,r ,L/2, whereL/2.25 is half the side of the cubic
simulation supercell which contains 108 000 atoms.

The RRDF,d(r ), is defined in terms of the atomic densi
r(r ) as

d~r !54pr @r~r !2r0#, ~20!
02670
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wherer0 is the average atomic density@13#. This is shown in
Fig. 12~a! for the IC glass. Reduced Lennard-Jones un
~r.u.! are used for length with the mean nearest-neigh
separation being 1.1560.05 r.u. The damped extended
range density fluctuations are clearly visible, extending
yond 10 r.u.@see the inset in Fig. 12~a!#.

From the Fourier power spectrum ofd(r ) ~shown in Fig.
12~b!, it is clear thatd(r ) contains many components wit
different frequencies. The highest peak inud̂u2 occurs at the
frequencynd51.0860.01. This peak has nonzero width im
plying that the real-space fluctuation ind(r ) corresponding
to this peak has a spatially varying amplitude but we can
deduce a functional form from this alone.

Plotting the modulusuFd(a,b)u of the CWT using differ-
ent envelope widths, shown as a function ofr and n
([2pk) in Fig. 13, allowsd(r ) to be examined in the time
frequency plane. Using smalls results in high spatial reso
FIG. 13. ModulusuFd(vc/2pn,r )u of the CWT of the RRDFd(r ) plotted as a function of frequencyn ~see Fig. 12! using the new
wavelet@Eq. ~5!# for ~a! s52; ~b! s515.
3-7
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lution but poor frequency resolution and the ridges
smeared together@see Fig. 13~a!#. Larger values ofs sepa-
rate the ridges at the cost of decreasing the spatial resolu
@see Fig. 13~b!#. Unlike the example function from the pre
ceding section,d(r ) contains several components with d
ferent frequencies which, particularly when using larges,
manifest themselves as separate ridges in the WT. In
paper we consider only the prominent ridge atn.nd but the
same analysis can be applied to the ridges seen at othe
quencies.

The ridge alongn.nd shows that the prominent fre
quency component identified from the Fourier power sp
trum of d(r ) is particularly strong aroundr 50 but decays
away with greaterr. This trajectory of the ridge can then b
used to extract the instantaneous frequencies and amplit
of this component ind(r ).

The instantaneous frequency found usings53 ~see Fig.
14! remains constant over a large range ofr. As expected, the
scale at which this ridge occurs in the CWT ofd(r ) corre-
sponds to the position of the prominent peak in the Fou
power spectrum ofd(r ).

The amplitudes of components in an RRDF are expec
to tend to zero in the limitr→` for a disordered materia
due to the absence of long-range order. The instantan
amplitudeAd(r ) of the dominant ridge extracted from th
CWT using the new wavelet, Eq.~5!, is shown plotted on a
logarithmic scale in Fig. 15. The amplitude is clearly seen
decay exponentially in the region 2,r ,18. The reason for
the exponential form of this decay~also observed by Ding
et al. @6# for silica glass! is not yet known.

The method used by Dinget al. @6# could not reproduce
the frequency modulation of the damped density fluctuati
in d(r ) and their observed amplitude modulation contain
only six points that were noted to decay approximately
ponentially. In comparison, our method reproduces true,
stantaneous frequencies~analogous to frequencies obtaine
by Fourier analysis!, showing the frequency modulation o
individual density fluctuations ind(r ), and the amplitude
modulations of these variable-frequency components, a
continuum of points. This gives much more compelling e

FIG. 14. Instantaneous frequencynd(r ) of the largest compo-
nent of the RRDFd(r ) @see Fig. 12~b!#. Solid line isnd extracted
using Eq.~17! with s53, dashed line is the best-fit constant fr
quencynd51.08 over the range 5,r ,18.
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dence for the exponential decay first observed by Dinget al.
@6#. In addition, we can detect a significant deviation fro
the exponential decay ofAd(r ) at larger ~see Fig. 15!. This
may either be due to statistical noise from the finite nature
the simulation or due to the use of periodic boundary con
tions in the model producing effective long-range order. T
precise reason needs further investigation.

IV. CONCLUSIONS

We have identified the complex, continuous wave
transform using wavelets of constant shape@8# as a method
well suited to the time-frequency analysis of on
dimensional functions. For our target application, name
the analysis of functions with components that have rapi
varying frequency and amplitude modulations, we have ill
trated an important shortcoming of the existing Morlet wav
let @2#, explained the origin of this shortcoming and propos
a new wavelet that overcomes the problem. In addition,
have specialized an existing method@9# for extracting instan-
taneous frequency and amplitude measurements from sig
to the new wavelet.

Two example functions have been analyzed using the n
wavelet and new method of analysis. The first, a sim
variable-frequency function, illustrates the significant im
provement of the new wavelet over the Morlet wavelet a
gives numerical evidence that our method of analysis is
curate. The second is a real-world example of a direct-sp
atomic correlation function of a glass which highlights t
advantages of the method over the conventional Fou
transform and greatly improves upon the single, previo
wavelet analysis of such a function by Dinget al. @6#.

We have successfully used the WT to analyze the redu
radial distribution function~RRDF! of a model glass and ca
immediately identify previously undetected features. T
dominant component in the RRDF~the damped extended
range density fluctuations! has a period that rapidly settles t
a constant value. Other components with different frequ
cies are present in the RRDF. These oscillations all h
approximately exponentially decaying real-space amplitud

FIG. 15. Instantaneous amplitudeAd(r ) of the largest compo-
nent of the RRDFd(r ) ~see Fig. 12! plotted on a logarithmic scale
Solid line isAd(t) extracted using Eq.~15! with s52, dashed line
is the best-fit exponential decayAd(r ).ae2br over the range 5
,r ,18, wherea531.860.5 andb50.35060.001.
3-8
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